
NAG Fortran Library Routine Document

D02NJF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

D02NJF is a forward communication routine for integrating stiff systems of implicit ordinary differential
equations coupled with algebraic equations when the Jacobian is a sparse matrix.

2 Specification

SUBROUTINE D02NJF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL, ATOL,
1 ITOL, INFORM, RESID, YSAVE, NY2DIM, JAC, WKJAC,
2 NWKJAC, JACPVT, NJCPVT, MONITR, LDERIV, ITASK, ITRACE,
3 IFAIL)

INTEGER NEQ, NEQMAX, ITOL, INFORM(23), NY2DIM, NWKJAC,
1 JACPVT(NJCPVT), NJCPVT, ITASK, ITRACE, IFAIL
real T, TOUT, Y(NEQMAX), YDOT(NEQMAX), RWORK(50+4*NEQMAX),

1 RTOL(*), ATOL(*), YSAVE(NEQMAX,NY2DIM), WKJAC(NWKJAC)
LOGICAL LDERIV(2)
EXTERNAL RESID, JAC, MONITR

3 Description

D02NJF is a general purpose routine for integrating the initial value problem for a stiff system of implicit
ordinary differential equations coupled with algebraic equations written in the form

Aðt; yÞy0 ¼ gðt; yÞ:
It is designed specifically for the case where the resulting Jacobian is a sparse matrix (see description of
argument JAC in Section 5).

Both interval and step oriented modes of operation are available and also modes designed to permit
intermediate output within an interval oriented mode.

An outline of a typical calling program for D02NJF is given below. It calls the sparse matrix linear
algebra setup routine D02NUF, the Backward Differentiation Formula (BDF) integrator setup routine
D02NVF, its diagnostic counterpart D02NYF, and the sparse matrix linear algebra diagnostic routine
D02NXF.

C
C declarations
C

EXTERNAL RESID, JAC, MONITR
.
.
.

IFAIL = 0
CALL D02NVF(...,IFAIL)
CALL D02NUF(NEQ, NEQMAX, JCEVAL, NWKJAC, IA, NIA, JA, NJA,

+ JACPVT, NJCPVT, SENS, U, ETA, LBLOCK, ISPLIT, RWORK,
+ IFAIL)
IFAIL = -1
CALL D02NJF(NEQ, NEQMAX, T, TOUT, Y, YDOT, RWORK, RTOL,

+ ATOL, ITOL, INFORM, RESID, YSAVE, NY2DIM, JAC, WKJAC,
+ NWKJAC, JACPVT, NJCPVT, MONITR, LDERIV, ITASK, ITRACE,
+ IFAIL)
IF(IFAIL.EQ.1.OR.IFIAL.GE.14)STOP
IFAIL = 0

CALL D02NXF(...)

D02 – Ordinary Differential Equations D02NJF

[NP3546/20A] D02NJF.1



CALL D02NYF(...)
.
.
.

STOP
END

The linear algebra setup routine D02NUF and one of the integrator setup routines, D02MVF, D02NVF or
D02NWF, must be called prior to the call of D02NJF. Either or both of the integrator diagnostic routine
D02NYF, or the sparse matrix linear algebra diagnostic routine D02NXF, may be called after the call to
D02NJF. There is also a routine, D02NZF, designed to permit the user to change step size on a
continuation call to D02NJF without restarting the integration process.

4 References

None.

5 Parameters

1: NEQ – INTEGER Input

On entry: the number of differential equations to be solved.

Constraint: NEQ � 1.

2: NEQMAX – INTEGER Input

On entry: a bound on the maximum number of equations to be solved during the integration.

Constraint: NEQMAX � NEQ.

3: T – real Input/Output

On entry: the value of the independent variable, t. The input value of T is used only on the first call
as the initial point of the integration.

On exit: the value at which the computed solution y is returned (usually at TOUT).

4: TOUT – real Input/Output

On entry: the next value of t at which a computed solution is desired. For the initial t, the input
value of TOUT is used to determine the direction of integration. Integration is permitted in either
direction (see also ITASK).

On exit: normally unchanged. However, when ITASK ¼ 6, then TOUT contains the value of T at
which initial values have been computed without performing any integration. See descriptions of
ITASK and LDERIV below.

5: Y(NEQMAX) – real array Input/Output

On entry: the values of the dependent variables (solution). On the first call the first NEQ elements
of y must contain the vector of initial values.

On exit: the computed solution vector, evaluated at t (usually t ¼ TOUT).

6: YDOT(NEQMAX) – real array Input/Output

On entry: if LDERIVð1Þ ¼ :TRUE:, YDOT must contain approximations to the time derivatives y0

of the vector y. If LDERIVð1Þ ¼ :FALSE:, then YDOT need not be set on entry.

On exit: the time derivatives y0 of the vector y at the last integration point.

D02NJF NAG Fortran Library Manual

D02NJF.2 [NP3546/20A]



7: RWORK(50+4*NEQMAX) – real array Workspace

8: RTOL(*) – real array Input

Note: the dimension of the array RTOL must be at least 1 or NEQ (see ITOL).

On entry: the relative local error tolerance.

Constraint: RTOLðiÞ � 0:0 for all relevant i (see ITOL).

9: ATOL(*) – real array Input

Note: the dimension of the array ATOL must be at least 1 or NEQ (see ITOL).

On entry: the absolute local error tolerance.

Constraint: ATOLðiÞ � 0:0 for all relevant i (see ITOL).

10: ITOL – INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D02NJF whether to
interpret either or both of RTOL or ATOL as a vector or a scalar. The error test to be satisfied is
kei=wik < 1:0, where wi is defined as follows

ITOL RTOL ATOL wi

1 scalar scalar RTOLð1Þ � jyij þ ATOLð1Þ
2 scalar vector RTOLð1Þ � jyij þ ATOLðiÞ
3 vector scalar RTOLðiÞ � jyij þ ATOLð1Þ
4 vector vector RTOLðiÞ � jyij þ ATOLðiÞ

ei is an estimate of the local error in yi, computed internally, and the choice of norm to be used is
defined by a previous call to an integrator setup routine.

Constraint: 1 � ITOL � 4.

11: INFORM(23) – INTEGER array Workspace

12: RESID – SUBROUTINE, supplied by the user. External Procedure

RESID must evaluate the residual

r ¼ gðt; yÞ �Aðt; yÞy0

in one case and

r ¼ �Aðt; yÞy0

in another.

Its specification is:

SUBROUTINE RESID(NEQ, T, Y, YDOT, R, IRES)

INTEGER NEQ, IRES
real T, Y(NEQ), YDOT(NEQ), R(NEQ)

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: T – real Input

On entry: the current value of the independent variable, t.

3: Y(NEQ) – real array Input

On entry: the value of yi, for i ¼ 1; 2; . . . ;NEQ.

D02 – Ordinary Differential Equations D02NJF

[NP3546/20A] D02NJF.3



4: YDOT(NEQ) – real array Input

On entry: the value of y0i at t, for i ¼ 1; 2; . . . ;NEQ.

5: R(NEQ) – real array Output

On exit: RðiÞ must contain the ith component of r, for i ¼ 1; 2; . . . ;NEQ where

r ¼ gðt; yÞ �Aðt; yÞy0 ð1Þ
or

r ¼ �Aðt; yÞy0 ð2Þ
and where the definition of r is determined by the input value of IRES.

6: IRES – INTEGER Input/Output

On entry: the form of the residual that must be returned in array R. If IRES ¼ �1, then
the residual defined in equation (2) above must be returned. If IRES ¼ 1, then the
residual defined in equation (1) above must be returned.

On exit: IRES should be unchanged unless one of the following actions is required of the
integrator, in which case IRES should be set accordingly.

IRES ¼ 2

Indicates to the integrator that control should be passed back immediately to the
calling (sub)program with the error indicator set to IFAIL ¼ 11.

IRES ¼ 3

Indicates to the integrator that an error condition has occurred in the solution vector,
its time derivative or in the value of t. The integrator will use a smaller time step
to try to avoid this condition. If this is not possible the integrator returns to the
calling (sub)program with the error indicator set to IFAIL ¼ 7.

IRES ¼ 4

Indicates to the integrator to stop its current operation and to enter the MONITR
routine immediately with parameter IMON ¼ �2.

RESID must be declared as EXTERNAL in the (sub)program from which D02NJF is called.
Parameters denoted as Input must not be changed by this procedure.

13: YSAVE(NEQMAX,NY2DIM) – real array Workspace
14: NY2DIM – INTEGER Input

On entry: the second dimension of the array YSAVE as declared in the (sub)program from which
D02NJF is called. An appropriate value for NY2DIM is described in the specifications of the
integrator setup routines D02MVF, D02NVF and D02NWF. This value must be the same as that
supplied to the integrator setup routine.

15: JAC – SUBROUTINE, supplied by the user. External Procedure

JAC must evaluate the Jacobian of the system. If this option is not required, JAC must be the
dummy routine D02NJZ. (D02NJZ is included in the NAG Fortran Library and so need not be
supplied by the user. Its name may be implementation dependent: see the Users’ Note for your
implementation for details.) The user indicates to the integrator whether this option is to be used by
setting the parameter JCEVAL appropriately in a call to the linear algebra setup routine D02NUF.

First we must define the system of nonlinear equations which is solved internally by the integrator.

The time derivative, y0, generated internally, has the form

y0 ¼ ðy� zÞ=ðhdÞ;
where h is the current step size and d is a parameter that depends on the integration method in use.

D02NJF NAG Fortran Library Manual

D02NJF.4 [NP3546/20A]



The vector y is the current solution and the vector z depends on information from previous time

steps. This means that d
dy0 ðÞ ¼ 1

ðhdÞ
d
dy ðÞ.

The system of nonlinear equations that is solved has the form

Aðt; yÞy0 � gðt; yÞ ¼ 0

but is solved in the form

rðt; yÞ ¼ 0;

where r is the function defined by

rðt; yÞ ¼ ðhdÞðAðt; yÞðy� zÞ=ðhdÞ � gðt; yÞÞ:

It is the Jacobian matrix @r
@y that the user must supply in the routine JAC as follows:

@ri
@yj

¼ aijðt; yÞ þ ðhdÞ @

@yj

XNEQ
k¼1

aikðt; yÞy0k � giðt; yÞ
 !

:

Its specification is:

SUBROUTINE JAC(NEQ, T, Y, YDOT, H, D, J, PDJ)

INTEGER NEQ, J
real T, Y(NEQ), YDOT(NEQ), H, D, PDJ(NEQ)

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: T – real Input

On entry: the current value of the independent variable, t.

3: Y(NEQ) – real array Input

On entry: the current solution component yi, i ¼ 1; 2; . . . ;NEQ.

4: YDOT(NEQ) – real array Input

On entry: the derivative of the solution at the current point t.

5: H – real Input

On entry: the current step size.

6: D – real Input

On entry: the parameter d which depends on the integration method.

7: J – INTEGER Input

On entry: the column of the Jacobian that JAC must return in the array PDJ.

8: PDJ(NEQ) – real array Output

On exit: PDJðiÞ should be set to the ði; jÞth element of the Jacobian, where j is given by J
above. Only non-zero elements of this array need be set, since it is preset to zero before
the call to JAC.

JAC must be declared as EXTERNAL in the (sub)program from which D02NJF is called.
Parameters denoted as Input must not be changed by this procedure.

D02 – Ordinary Differential Equations D02NJF

[NP3546/20A] D02NJF.5



16: WKJAC(NWKJAC) – real array Workspace
17: NWKJAC – INTEGER Input

On entry: the dimension of the array WKJAC as declared in the (sub)program from which D02NJF
is called. The actual size depends on whether the sparsity structure is supplied or whether it is to be
estimated. An appropriate value for NWKJAC is described in the specification for the linear algebra
setup routine D02NUF. This value must be the same as that supplied to D02NUF.

18: JACPVT(NJCPVT) – INTEGER array Workspace
19: NJCPVT – INTEGER Input

On entry: the dimension of the array JACPVT as declared in the (sub)program from which D02NJF
is called. The actual size depends on whether the sparsity structure is supplied or whether it is to be
estimated. An appropriate value for NJCPVT is described in the specification for the linear algebra
setup routine D02NUF. This value must be same as that supplied to D02NUF.

20: MONITR – SUBROUTINE, supplied by the user. External Procedure

MONITR performs tasks requested by the user. If this option is not required, then the actual
argument for MONITR must be the dummy routine D02NBY. (D02NBY is included in the NAG
Fortran Library and so need not be supplied by the user. Its name may be implementation
dependent: see the Users’ Note for your implementation for details.)

Its specification is:

SUBROUTINE MONITR(NEQ, NEQMAX, T, HLAST, HNEXT, Y, YDOT, YSAVE, R,
1 ACOR, IMON, INLN, HMIN, HMAX, NQU)

INTEGER NEQ, NEQMAX, IMON, INLN, NQU
real T, HLAST, HNEXT, Y(NEQMAX), YDOT(NEQMAX),

1 YSAVE(NEQMAX,*), R(NEQMAX), ACOR(NEQMAX,2), HMIN,
2 HMAX

1: NEQ – INTEGER Input

On entry: the number of equations being solved.

2: NEQMAX – INTEGER Input

On entry: an upper bound on the number of equations to be solved.

3: T – real Input

On entry: the current value of the independent variable.

4: HLAST – real Input

On entry: the last step size successfully used by the integrator.

5: HNEXT – real Input/Output

On entry: the step size that the integrator proposes to take on the next step.

On exit: the next step size to be used. If this is different from the input value, then IMON
must be set to 4.

6: Y(NEQMAX) – real array Input/Output

On entry: the values of the dependent variables, y, evaluated at t.

On exit: these values must not be changed unless IMON is set to 2.

7: YDOT(NEQMAX) – real array Input

On entry: the time derivatives y0 of the vector y.

D02NJF NAG Fortran Library Manual

D02NJF.6 [NP3546/20A]



8: YSAVE(NEQMAX,*) – real array Input

On entry: workspace to enable the user to carry out interpolation using either of the
routines D02XJF or D02XKF.

9: R(NEQMAX) – real array Input

On entry: if IMON ¼ 0 and INLN ¼ 3, the first NEQ elements contain the residual vector

Aðt; yÞy0 � gðt; yÞ.

10: ACOR(NEQMAX,2) – real array Input

On entry: with IMON ¼ 1, ACORði; 1Þ contains the weight used for the ith equation
when the norm is evaluated, and ACORði; 2Þ contains the estimated local error for the ith
equation. The scaled local error at the end of a timestep may be obtained by calling the
real function D02ZAF as follows:

IFAIL = 1
ERRLOC = D02ZAF(NEQ, ACOR(1,2), ACOR(1,1), IFAIL)

C CHECK IFAIL BEFORE PROCEEDING

11: IMON – INTEGER Input/Output

On entry: a flag indicating under what circumstances MONITR was called:

IMON ¼ �2

Entry from the integrator after IRES ¼ 4 (set in RESID) caused an early
termination (this facility could be used to locate discontinuities).

IMON ¼ �1

The current step failed repeatedly.

IMON ¼ 0

Entry after a call to the internal nonlinear equation solver (see below).

IMON ¼ 1

The current step was successful.

On exit: IMON may be reset to determine subsequent action in D02NJF:

IMON ¼ �2

Integration is to be halted. A return will be made from the integrator to the calling
(sub)program with IFAIL ¼ 12.

IMON ¼ �1

Allow the integrator to continue with its own internal strategy. The integrator will
try up to 3 restarts unless IMON is set 6¼ �1 on exit.

IMON ¼ 0

Return to the internal nonlinear equation solver, where the action taken is
determined by the value of INLN (see below).

IMON ¼ 1

Normal exit to the integrator to continue integration.

IMON ¼ 2

Restart the integration at the current time point. The integrator will restart from
order 1 when this option is used. The MONITR provided solution Y will be used
for the initial conditions.

D02 – Ordinary Differential Equations D02NJF

[NP3546/20A] D02NJF.7



IMON ¼ 3

Try to continue with the same step size and order as was to be used before the call
to MONITR. HMIN and HMAX may be altered if desired.

IMON ¼ 4

Continue the integration but using a new value HNEXT and possibly new values of
HMIN and HMAX.

12: INLN – INTEGER Output

On exit: the action to be taken by the internal nonlinear equation solver when MONITR is
exited with IMON ¼ 0. By setting INLN ¼ 3 and returning to the integrator, the residual
vector is evaluated and placed in the array R, and then MONITR is called again. At
present this is the only option available: INLN must not be set to any other value.

13: HMIN – real Input/Output

On entry: the minimum step size to be taken on the next step.

On exit: the minimum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4.

14: HMAX – real Input/Output

On entry: the maximum step size to be taken on the next step.

On exit: the maximum step size to be used. If this is different from the input value, then
IMON must be set to 3 or 4. If HMAX is set to zero, no limit is assumed.

15: NQU – INTEGER Input

On entry: the order of the integrator used on the last step. This is supplied to enable the
user to carry out interpolation using either of the routines D02XJF or D02XKF.

MONITR must be declared as EXTERNAL in the (sub)program from which D02NJF is called.
Parameters denoted as Input must not be changed by this procedure.

21: LDERIV(2) – LOGICAL array Input/Output

On entry: LDERIV(1) must be set to .TRUE., if the user has supplied both an initial y and an initial

y0. LDERIV(1) must be set to .FALSE., if only the initial y has been supplied.

LDERIV(2) must be set to .TRUE., if the integrator is to use a modified Newton method to evaluate

the initial y and y0. Note that y and y0, if supplied, are used as initial estimates. This method
involves taking a small step at the start of the integration, and if ITASK ¼ 6 on entry, T and TOUT
will be set to the result of taking this small step. LDERIV(2) must be set to .FALSE. if the

integrator is to use functional iteration to evaluate the initial y and y0, and if this fails a modified
Newton method will then be attempted. LDERIVð2Þ ¼ :TRUE: is recommended if there are

implicit equations or the initial y and y0 are zero.

On exit: LDERIV(1) is normally unchanged. However if ITASK ¼ 6 and internal initialisation was
successful then LDERIVð1Þ ¼ :TRUE:.

LDERIVð2Þ ¼ :TRUE:, if implicit equations were detected. Otherwise LDERIVð2Þ ¼ :FALSE:.

22: ITASK – INTEGER Input

On entry: the task to be performed by the integrator. The permitted values for ITASK and their
meanings are detailed below:

ITASK ¼ 1

Normal computation of output values of yðtÞ at t ¼ TOUT (by overshooting and
interpolating).

D02NJF NAG Fortran Library Manual

D02NJF.8 [NP3546/20A]



ITASK ¼ 2

Take one step only and return.

ITASK ¼ 3

Stop at the first internal integration point at or beyond t ¼ TOUT and return.

ITASK ¼ 4

Normal computation of output values of yðtÞ at t ¼ TOUT but without overshooting
t ¼ TCRIT. TCRIT must be specified as an option in one of the integrator setup routines
prior to the first call to the integrator, or specified in the optional input routine prior to a
continuation call. TCRIT may be equal to or beyond TOUT, but not before it, in the
direction of integration.

ITASK ¼ 5

Take one step only and return, without passing TCRIT. TCRIT must be specified as under
ITASK ¼ 4.

ITASK ¼ 6

The integrator will solve for the initial values of y and y0 only and then return to the calling
(sub)program without doing the integration. This option can be used to check the initial

values of y and y0. Functional iteration or a ‘small’ backward Euler method used in
conjunction with a damped Newton iteration is used to calculate these values (see LDERIV
above). Note that if a backward Euler step is used then the value of t will have been
advanced a short distance from the initial point.

Note: if D02NJF is recalled with a different value of ITASK (and TOUT altered), then the
initialisation procedure is repeated, possibly leading to different initial conditions.

Constraint: 1 � ITASK � 6.

23: ITRACE – INTEGER Input

On entry: the level of output that is printed by the integrator. ITRACE may take the value �1, 0, 1,
2 or 3. If ITRACE < �1, then �1 is assumed and similarly if ITRACE > 3, then 3 is assumed. If
ITRACE ¼ �1, no output is generated. If ITRACE ¼ 0, only warning messages are printed on the
current error message unit (see X04AAF). If ITRACE > 0 then warning messages are printed as
above, and on the current advisory message unit (see X04ABF) output is generated which details
Jacobian entries, the nonlinear iteration and the time integration. The advisory messages are given
in greater detail the larger the value of ITRACE.

24: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

D02 – Ordinary Differential Equations D02NJF

[NP3546/20A] D02NJF.9



IFAIL ¼ 1

An illegal input was detected on entry, or after an internal call to MONITR. If ITRACE > �1, then
the form of the error will be detailed on the current error message unit (see X04AAF).

IFAIL ¼ 2

The maximum number of steps specified has been taken (see the description of optional inputs in
the integrator setup routines and the optional input continuation routine, D02NZF).

IFAIL ¼ 3

With the given values of RTOL and ATOL no further progress can be made across the integration
range from the current point T. The components Yð1Þ;Yð2Þ; . . . ;YðNEQÞ contain the computed
values of the solution at the current point T.

IFAIL ¼ 4

There were repeated error test failures on an attempted step, before completing the requested task,
but the integration was successful as far as T. The problem may have a singularity, or the local
error requirements may be inappropriate.

IFAIL ¼ 5

There were repeated convergence test failures on an attempted step, before completing the requested
task, but the integration was successful as far as T. This may be caused by an inaccurate Jacobian
matrix or one which is incorrectly computed.

IFAIL ¼ 6

Some error weight wi became zero during the integration (see description of ITOL). Pure relative
error control (ATOLðiÞ ¼ 0:0) was requested on a variable (the ith) which has now vanished. The
integration was successful as far as T.

IFAIL ¼ 7

The user-supplied subroutine RESID set its error flag (IRES ¼ 3) continually despite repeated
attempts by the integrator to avoid this.

IFAIL ¼ 8

LDERIVð1Þ ¼ :FALSE: on entry but the internal initialisation routine was unable to initialise y0

(more detailed information may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 9

A singular Jacobian @r
@y has been encountered. The user should check the problem formulation and

Jacobian calculation.

IFAIL ¼ 10

An error occurred during Jacobian formulation or back-substitution (a more detailed error
description may be directed to the current error message unit, see X04AAF).

IFAIL ¼ 11

The user-supplied subroutine RESID signalled the integrator to halt the integration and return
(IRES ¼ 2). Integration was successful as far as T.

IFAIL ¼ 12

The user-supplied subroutine MONITR set IMON ¼ �2 and so forced a return but the integration
was successful as far as T.

D02NJF NAG Fortran Library Manual

D02NJF.10 [NP3546/20A]



IFAIL ¼ 13

The requested task has been completed, but it is estimated that a small change in RTOL and ATOL
is unlikely to produce any change in the computed solution. (Only applies when the user is not
operating in one step mode, that is when ITASK 6¼ 2 or 5.)

IFAIL ¼ 14

The values of RTOL and ATOL are so small that the routine is unable to start the integration.

IFAIL ¼ 15

The linear algebra setup routine D02NUF was not called before the call to D02NJF.

7 Accuracy

The accuracy of the numerical solution may be controlled by a careful choice of the parameters RTOL and
ATOL, and to a much lesser extent by the choice of norm. Users are advised to use scalar error control
unless the components of the solution are expected to be poorly scaled. For the type of decaying solution
typical of many stiff problems, relative error control with a small absolute error threshold will be most
appropriate (that is the user is advised to choose ITOL ¼ 1 with ATOL(1) small but positive).

8 Further Comments

Since numerical stability and memory are often conflicting requirements when solving ordinary differential
systems where the Jacobian matrix is sparse we provide a diagnostic routine, D02NXF, whose aim is to
inform the user how much memory is required to solve his problem and to give the user some indicators of
numerical stability.

In general the user is advised to choose the backward differentiation formula option (setup routine

D02NVF) but if efficiency is of great importance and especially if it is suspected that @
@y A�1g
� �

has

complex eigenvalues near the imaginary axis for some part of the integration, the user should try the
BLEND option (setup routine D02NWF).

9 Example

We solve the well-known stiff Robertson problem written as a mixed differential/algebraic system in
implicit form

r1 ¼ aþ bþ c� 1:0

r2 ¼ 0:04a� 1:0E4bc � 3:0E7b2 � b0

r3 ¼ 3:0E7b2 � c0

exploiting the fact that, from the initial conditions a ¼ 1:0 and b ¼ c ¼ 0:0, we know that aþ bþ c ¼ 1
for all time. We integrate over the range [0,10.0] with vector relative error control and scalar absolute
error control (ITOL ¼ 3) and using the BDF integrator (setup routine D02NVF) and a modified Newton
method. The Jacobian is evaluated, in turn, using the ’A’ (Analytical) and ’F’ (Full information) options.
We provide a monitor routine to terminate the integration when the value of the component a falls below
0.9.

D02 – Ordinary Differential Equations D02NJF

[NP3546/20A] D02NJF.11



9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* D02NJF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NEQ, NEQMAX, NRW, NINF, NELTS, NJCPVT, NWKJAC,

+ NIA, NJA, MAXORD, NY2DIM, MAXSTP, MXHNIL
PARAMETER (NEQ=3,NEQMAX=NEQ,NRW=50+4*NEQMAX,NINF=23,

+ NELTS=8,NJCPVT=150,NWKJAC=100,NIA=NEQMAX+1,
+ NJA=NELTS,MAXORD=5,NY2DIM=MAXORD+1,MAXSTP=200,
+ MXHNIL=5)
real H0, HMAX, HMIN, TCRIT
PARAMETER (H0=0.0e0,HMAX=10.0e0,HMIN=1.0e-10,TCRIT=0.0e0)
LOGICAL PETZLD
PARAMETER (PETZLD=.TRUE.)
real ETA, U, SENS
PARAMETER (ETA=1.0e-4,U=0.1e0,SENS=1.0e-6)
LOGICAL LBLOCK
PARAMETER (LBLOCK=.TRUE.)

* .. Local Scalars ..
real H, HU, T, TCUR, TOLSF, TOUT
INTEGER I, ICALL, IFAIL, IGROW, IMXER, ISPLIT, ITASK,

+ ITOL, ITRACE, LIWREQ, LIWUSD, LRWREQ, LRWUSD,
+ NBLOCK, NGP, NITER, NJE, NLU, NNZ, NQ, NQU, NRE,
+ NST

* .. Local Arrays ..
real ATOL(NEQMAX), CONST(6), RTOL(NEQMAX), RWORK(NRW),

+ WKJAC(NWKJAC), Y(NEQMAX), YDOT(NEQMAX),
+ YSAVE(NEQMAX,NY2DIM)
INTEGER IA(NIA), INFORM(NINF), JA(NJA), JACPVT(NJCPVT)
LOGICAL ALGEQU(NEQMAX), LDERIV(2)

* .. External Subroutines ..
EXTERNAL D02NJF, D02NUF, D02NVF, D02NXF, D02NYF, JAC,

+ MONITR, RESID, X04ABF
* .. Data statements ..

DATA IA/1, 3, 6, 9/, JA/1, 2, 1, 2, 3, 1, 2, 3/
* .. Executable Statements ..

WRITE (NOUT,*) ’D02NJF Example Program Results’
CALL X04ABF(1,NOUT)

*
* First case. Integrate to TOUT by overshooting (ITASK=1) using
* B.D.F formulae with a Newton method. Also set PETZLD to
* .TRUE. so that the Petzold error test is used (since an algebraic
* equation is defined in the system). Default values for the
* array CONST are used. Employ vector relative tolerance and scalar
* absolute tolerance. The Jacobian is supplied by JAC and its
* structure is determined internally by calls to JAC.
* The MONITR routine is used to force a return when the first
* component of the system falls below the value 0.9.
*

T = 0.0e0
TOUT = 10.0e0
ITASK = 1
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0
LDERIV(1) = .FALSE.
LDERIV(2) = .FALSE.
ITOL = 3
RTOL(1) = 1.0e-4
RTOL(2) = 1.0e-3
RTOL(3) = 1.0e-4
ATOL(1) = 1.0e-7
DO 20 I = 1, 6

CONST(I) = 0.0e0

D02NJF NAG Fortran Library Manual

D02NJF.12 [NP3546/20A]



20 CONTINUE
ISPLIT = 0
IFAIL = 0

*
CALL D02NVF(NEQMAX,NY2DIM,MAXORD,’Newton’,PETZLD,CONST,TCRIT,HMIN,

+ HMAX,H0,MAXSTP,MXHNIL,’Average-L2’,RWORK,IFAIL)
CALL D02NUF(NEQ,NEQMAX,’Analytical’,NWKJAC,IA,NIA,JA,NJA,JACPVT,

+ NJCPVT,SENS,U,ETA,LBLOCK,ISPLIT,RWORK,IFAIL)
*

WRITE (NOUT,*)
WRITE (NOUT,*) ’ Analytic Jacobian, structure not supplied’
WRITE (NOUT,*)
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
WRITE (NOUT,99999) T, (Y(I),I=1,NEQ)

*
* Soft fail and error messages only

ITRACE = 0
IFAIL = 1

*
CALL D02NJF(NEQ,NEQMAX,T,TOUT,Y,YDOT,RWORK,RTOL,ATOL,ITOL,INFORM,

+ RESID,YSAVE,NY2DIM,JAC,WKJAC,NWKJAC,JACPVT,NJCPVT,
+ MONITR,LDERIV,ITASK,ITRACE,IFAIL)

*
IF (IFAIL.EQ.0 .OR. IFAIL.EQ.12) THEN

WRITE (NOUT,99999) T, (Y(I),I=1,NEQ)
IFAIL = 0

*
CALL D02NYF(NEQ,NEQMAX,HU,H,TCUR,TOLSF,RWORK,NST,NRE,NJE,NQU,

+ NQ,NITER,IMXER,ALGEQU,INFORM,IFAIL)
*

WRITE (NOUT,*)
WRITE (NOUT,99997) ’ HUSED = ’, HU, ’ HNEXT = ’, H,

+ ’ TCUR = ’, TCUR
WRITE (NOUT,99996) ’ NST = ’, NST, ’ NRE = ’, NRE,

+ ’ NJE = ’, NJE
WRITE (NOUT,99996) ’ NQU = ’, NQU, ’ NQ = ’, NQ,

+ ’ NITER = ’, NITER
WRITE (NOUT,99995) ’ Max err comp = ’, IMXER
ICALL = 0

*
CALL D02NXF(ICALL,LIWREQ,LIWUSD,LRWREQ,LRWUSD,NLU,NNZ,NGP,

+ ISPLIT,IGROW,LBLOCK,NBLOCK,INFORM)
*

WRITE (NOUT,*)
WRITE (NOUT,99994) ’ NJCPVT (required ’, LIWREQ, ’ used ’,

+ LIWUSD, ’)’
WRITE (NOUT,99994) ’ NWKJAC (required ’, LRWREQ, ’ used ’,

+ LRWUSD, ’)’
WRITE (NOUT,99993) ’ No. of LU-decomps ’, NLU,

+ ’ No. of nonzeros ’, NNZ
WRITE (NOUT,99992) ’ No. of FCN calls to form Jacobian ’, NGP,

+ ’ Try ISPLIT ’, ISPLIT
WRITE (NOUT,99991) ’ Growth est ’, IGROW,

+ ’ No. of blocks on diagonal ’, NBLOCK
ELSE IF (IFAIL.EQ.10) THEN

ICALL = 1
*

CALL D02NXF(ICALL,LIWREQ,LIWUSD,LRWREQ,LRWUSD,NLU,NNZ,NGP,
+ ISPLIT,IGROW,LBLOCK,NBLOCK,INFORM)

*
WRITE (NOUT,*)
WRITE (NOUT,99994) ’ NJCPVT (required ’, LIWREQ, ’ used ’,

+ LIWUSD, ’)’
WRITE (NOUT,99994) ’ NWKJAC (required ’, LRWREQ, ’ used ’,

+ LRWUSD, ’)’
ELSE

WRITE (NOUT,*)
WRITE (NOUT,99998) ’Exit D02NJF with IFAIL = ’, IFAIL,

+ ’ and T = ’, T
END IF

*

D02 – Ordinary Differential Equations D02NJF

[NP3546/20A] D02NJF.13



* Second case. Integrate to TOUT by overshooting (ITASK=1) using
* B.D.F formulae with a Newton method. Also set PETZLD to
* .TRUE. so that the Petzold error test is used (since an algebraic
* equation is defined in the system). Default values for the
* array CONST are used. Employ vector relative tolerance and scalar
* absolute tolerance. The Jacobian is supplied by JAC and its
* structure is also supplied.
* The MONITR routine is used to force a return when the first
* component of the system falls below the value 0.9.
*

T = 0.0e0
Y(1) = 1.0e0
Y(2) = 0.0e0
Y(3) = 0.0e0

*
ISPLIT = 0
IFAIL = 0

*
CALL D02NVF(NEQMAX,NY2DIM,MAXORD,’Newton’,PETZLD,CONST,TCRIT,HMIN,

+ HMAX,H0,MAXSTP,MXHNIL,’Average-L2’,RWORK,IFAIL)
*

CALL D02NUF(NEQ,NEQMAX,’Full information’,NWKJAC,IA,NIA,JA,NJA,
+ JACPVT,NJCPVT,SENS,U,ETA,LBLOCK,ISPLIT,RWORK,IFAIL)

*
LDERIV(1) = .FALSE.
LDERIV(2) = .FALSE.

*
WRITE (NOUT,*)
WRITE (NOUT,*) ’ Analytic Jacobian, structure supplied’
WRITE (NOUT,*)
WRITE (NOUT,*) ’ X Y(1) Y(2) Y(3)’
WRITE (NOUT,99999) T, (Y(I),I=1,NEQ)
IFAIL = 1

*
CALL D02NJF(NEQ,NEQMAX,T,TOUT,Y,YDOT,RWORK,RTOL,ATOL,ITOL,INFORM,

+ RESID,YSAVE,NY2DIM,JAC,WKJAC,NWKJAC,JACPVT,NJCPVT,
+ MONITR,LDERIV,ITASK,ITRACE,IFAIL)

*
IF (IFAIL.EQ.0 .OR. IFAIL.EQ.12) THEN

WRITE (NOUT,99999) T, (Y(I),I=1,NEQ)
IFAIL = 0

*
CALL D02NYF(NEQ,NEQMAX,HU,H,TCUR,TOLSF,RWORK,NST,NRE,NJE,NQU,

+ NQ,NITER,IMXER,ALGEQU,INFORM,IFAIL)
*

WRITE (NOUT,*)
WRITE (NOUT,99997) ’ HUSED = ’, HU, ’ HNEXT = ’, H,

+ ’ TCUR = ’, TCUR
WRITE (NOUT,99996) ’ NST = ’, NST, ’ NRE = ’, NRE,

+ ’ NJE = ’, NJE
WRITE (NOUT,99996) ’ NQU = ’, NQU, ’ NQ = ’, NQ,

+ ’ NITER = ’, NITER
WRITE (NOUT,99995) ’ Max err comp = ’, IMXER
WRITE (NOUT,*)
ICALL = 0

*
CALL D02NXF(ICALL,LIWREQ,LIWUSD,LRWREQ,LRWUSD,NLU,NNZ,NGP,

+ ISPLIT,IGROW,LBLOCK,NBLOCK,INFORM)
*

WRITE (NOUT,*)
WRITE (NOUT,99994) ’ NJCPVT (required ’, LIWREQ, ’ used ’,

+ LIWUSD, ’)’
WRITE (NOUT,99994) ’ NWKJAC (required ’, LRWREQ, ’ used ’,

+ LRWUSD, ’)’
WRITE (NOUT,99993) ’ No. of LU-decomps ’, NLU,

+ ’ No. of nonzeros ’, NNZ
WRITE (NOUT,99992) ’ No. of FCN calls to form Jacobian ’, NGP,

+ ’ Try ISPLIT ’, ISPLIT
WRITE (NOUT,99991) ’ Growth est ’, IGROW,

+ ’ No. of blocks on diagonal ’, NBLOCK
ELSE IF (IFAIL.EQ.10) THEN

D02NJF NAG Fortran Library Manual

D02NJF.14 [NP3546/20A]



ICALL = 1
*

CALL D02NXF(ICALL,LIWREQ,LIWUSD,LRWREQ,LRWUSD,NLU,NNZ,NGP,
+ ISPLIT,IGROW,LBLOCK,NBLOCK,INFORM)

*
WRITE (NOUT,*)
WRITE (NOUT,99994) ’ NJCPVT (required ’, LIWREQ, ’ used ’,

+ LIWUSD, ’)’
WRITE (NOUT,99994) ’ NWKJAC (required ’, LRWREQ, ’ used ’,

+ LRWUSD, ’)’
ELSE

WRITE (NOUT,*)
WRITE (NOUT,99998) ’Exit D02NJF with IFAIL = ’, IFAIL,

+ ’ and T = ’, T
END IF
STOP

*
99999 FORMAT (1X,F8.3,3(F13.5,2X))
99998 FORMAT (1X,A,I2,A,e12.5)
99997 FORMAT (1X,A,e12.5,A,e12.5,A,e12.5)
99996 FORMAT (1X,A,I6,A,I6,A,I6)
99995 FORMAT (1X,A,I4)
99994 FORMAT (1X,A,I8,A,I8,A)
99993 FORMAT (1X,A,I4,A,I8)
99992 FORMAT (1X,A,I4,A,I4)
99991 FORMAT (1X,A,I8,A,I4)

END
*

SUBROUTINE RESID(NEQ,T,Y,YDOT,R,IRES)
* .. Scalar Arguments ..

real T
INTEGER IRES, NEQ

* .. Array Arguments ..
real R(NEQ), Y(NEQ), YDOT(NEQ)

* .. Executable Statements ..
R(1) = 0.0e0
R(2) = -YDOT(2)
R(3) = -YDOT(3)
IF (IRES.EQ.1) THEN

R(1) = Y(1) + Y(2) + Y(3) - 1.0e0 + R(1)
R(2) = 0.04e0*Y(1) - 1.0e4*Y(2)*Y(3) - 3.0e7*Y(2)*Y(2) + R(2)
R(3) = 3.0e7*Y(2)*Y(2) + R(3)

END IF
RETURN
END

*
SUBROUTINE JAC(NEQ,T,Y,YDOT,H,D,J,PDJ)

* .. Scalar Arguments ..
real D, H, T
INTEGER J, NEQ

* .. Array Arguments ..
real PDJ(NEQ), Y(NEQ), YDOT(NEQ)

* .. Local Scalars ..
real HXD

* .. Executable Statements ..
HXD = H*D
IF (J.EQ.1) THEN

PDJ(1) = 0.0e0 - HXD*(1.0e0)
PDJ(2) = 0.0e0 - HXD*(0.04e0)

* PDJ(3) = 0.0 - HXD*(0.)
ELSE IF (J.EQ.2) THEN

PDJ(1) = 0.0e0 - HXD*(1.0e0)
PDJ(2) = 1.0e0 - HXD*(-1.0e4*Y(3)-6.0e7*Y(2))
PDJ(3) = 0.0e0 - HXD*(6.0e7*Y(2))

ELSE IF (J.EQ.3) THEN
PDJ(1) = 0.0e0 - HXD*(1.0e0)
PDJ(2) = 0.0e0 - HXD*(-1.0e4*Y(2))
PDJ(3) = 1.0e0 - HXD*(0.0e0)

END IF
RETURN
END

D02 – Ordinary Differential Equations D02NJF

[NP3546/20A] D02NJF.15



*
SUBROUTINE MONITR(N,NMAX,T,HLAST,H,Y,YDOT,YSAVE,R,ACOR,IMON,INLN,

+ HMIN,HMXI,NQU)
* .. Scalar Arguments ..

real H, HLAST, HMIN, HMXI, T
INTEGER IMON, INLN, N, NMAX, NQU

* .. Array Arguments ..
real ACOR(NMAX,2), R(N), Y(N), YDOT(N), YSAVE(NMAX,*)

* .. Executable Statements ..
IF (Y(1).LE.0.9e0) IMON = -2
RETURN
END

9.2 Program Data

None.

9.3 Program Results

D02NJF Example Program Results

Analytic Jacobian, structure not supplied

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000
4.862 0.89332 0.00002 0.10666

HUSED = 0.61574E+00 HNEXT = 0.61574E+00 TCUR = 0.48624E+01
NST = 50 NRE = 144 NJE = 15
NQU = 4 NQ = 4 NITER = 129
Max err comp = 3

NJCPVT (required 93 used 150)
NWKJAC (required 29 used 76)
No. of LU-decomps 15 No. of nonzeros 7
No. of FCN calls to form Jacobian 0 Try ISPLIT 73
Growth est 140290 No. of blocks on diagonal 1

Analytic Jacobian, structure supplied

X Y(1) Y(2) Y(3)
0.000 1.00000 0.00000 0.00000
4.957 0.89208 0.00002 0.10790

HUSED = 0.59971E+00 HNEXT = 0.59971E+00 TCUR = 0.49566E+01
NST = 52 NRE = 131 NJE = 12
NQU = 4 NQ = 4 NITER = 117
Max err comp = 3

NJCPVT (required 99 used 150)
NWKJAC (required 31 used 75)
No. of LU-decomps 12 No. of nonzeros 8
No. of FCN calls to form Jacobian 0 Try ISPLIT 73
Growth est 1034 No. of blocks on diagonal 1

D02NJF NAG Fortran Library Manual

D02NJF.16 (last) [NP3546/20A]


	D02NJF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	NEQ
	NEQMAX
	T
	TOUT
	Y
	YDOT
	RWORK
	RTOL
	ATOL
	ITOL
	INFORM
	RESID
	NEQ
	T
	Y
	YDOT
	R
	IRES

	YSAVE
	NY2DIM
	JAC
	NEQ
	T
	Y
	YDOT
	H
	D
	J
	PDJ

	WKJAC
	NWKJAC
	JACPVT
	NJCPVT
	MONITR
	NEQ
	NEQMAX
	T
	HLAST
	HNEXT
	Y
	YDOT
	YSAVE
	R
	ACOR
	IMON
	INLN
	HMIN
	HMAX
	NQU

	LDERIV
	ITASK
	ITRACE
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7
	IFAIL = 8
	IFAIL = 9
	IFAIL = 10
	IFAIL = 11
	IFAIL = 12
	IFAIL = 13
	IFAIL = 14
	IFAIL = 15

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	Fortran Library, Mark 20
	Foreword
	Introduction
	Essential Introduction
	Mark 20 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Information
	Users' Note

	A02 - Complex Arithmetic
	C02 - Zeros of Polynomials
	C05 - Roots of One or More Transcendental Equations
	C06 - Summation of Series
	D01 - Quadrature
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	D04 - Numerical Differentiation
	D05 - Integral Equations
	D06 - Mesh Generation
	E01 - Interpolation
	E02 - Curve and Surface Fitting
	E04 - Minimizing or Maximizing a Function
	F - Linear Algebra
	F01 - Matrix Factorizations
	F02 - Eigenvalues and Eigenvectors
	F03 - Determinants
	F04 - Simultaneous Linear Equations
	F05 - Orthogonalisation
	F06 - Linear Algebra Support Routines
	F07 - Linear Equations (LAPACK)
	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	F11 - Sparse Linear Algebra
	G01 - Simple Calculations on Statistical Data
	G02 - Correlation and Regression Analysis
	G03 - Multivariate Methods
	G04 - Analysis of Variance
	G05 - Random Number Generators
	G07 - Univariate Estimation
	G08 - Nonparametric Statistics
	G10 - Smoothing in Statistics
	G11 - Contingency Table Analysis
	G12 - Survival Analysis
	G13 - Time Series Analysis
	H - Operations Research
	M01 - Sorting
	P01 - Error Trapping
	S - Approximations of Special Functions
	X01 - Mathematical Constants
	X02 - Machine Constants
	X03 - Inner Products
	X04 - Input/Output Utilities
	X05 - Date and Time Utilities


